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Abstract--We study the evaporation of a droplet in its own stagnant vapor. Using three successive 
asymptotic expansions we can deduce an analytic expression for the drop radius. The nondimensionalized 
numbers involved in the expansion are the Mach number, the ratio of the thermal diffusivities and the 
Stefan number. The results obtained improve the previous ones derived with the so called quasi-permanent 
hypothesis. The comparison with numerical computation shows that the expression obtained by singular 

perturbation is a good approximation. Copyright © 1996 Elsevier Science Ltd. 

1. INTRODUCTION 

The vaporization of a droplet has been considered as 
an important problem for spray combustion and the 
cooling of a hot gas stream. The first studies based on 
continuum hypothesis were summed up in the work 
of Fuks [1] in 1959. We will consider here, the vapo- 
rization of a drop in its own vapor. It has been known 
for a long time that for a spherical drop of liquid 
evaporating in its vapor or burning, the square of the 
radius is a linear function of time. This law has been 
verified experimentally see Williams [2] or Gyar- 
marthy [3], and has been deduced theoretically [4, 5, 
6], even in recent studies see Kruz [7]. The theoretical 
deduction has been always based on the 'quasi per- 
manent' assumption. The authors supposed that it is 
legitimate to consider that the temperature inside the 
drop depends upon the time only as a function of the 
droplet radius. This hypothesis is valid only for a long 
time period. In this paper we will consider again this 
old problem, but on the basis of asymptotic matching, 
we will show that it is possible to obtain a solution 
valid for all time, as the solution of a boundary layer 
problem, and to evaluate the correctness of the quasi- 
permanent hypothesis. Three expansions will be 
necessary. The first one involves the Mach number M, 
this number is the smallest, the second one involves 
the number e ratio of the thermal diffusivities of the 
two media, and the third involves the Stefan number 
S. We will develop the two last expansions in e and S 
up to first-order in ~ and to second- and third-order 
in S. These two expansions will be singular. Using the 
matching rules of Van Dykes [8], we will obtain a 
corrected R 2 law better than the one obtained with the 
quasi-permanent assumption. The evaporation time, 
i.e. when the drop radius R vanishes, is obtained with 
more accuracy, and can be compared with the one 
computed numerically. 

Section 2 is devoted to the notations and the pos- 

ition of the problem, the interface is considered as an 
infinitely thin surface and the temperature is con- 
tinuous across the interface. In this paragraph we 
introduce the different nondimensional numbers used 
in the asymptotic analysis. Section 3 is devoted to the 
asymptotic analysis. We derive an expansion in the 
Stefan number for the square radius of the drop. The 
expansion is singular, therefore we need an inner and 
outer approximation that can be matched to obtain 
an explicit expression. This expression generalizes the 
one known previously, and we show that the relative 
correction is proportional to the Stefan number. In 
Section 4 we numerically solve a part of the problem 
and test the accuracy of the approximation, and we 
show that the second-order approximation gives a 
good expression for the drop radius. 

2. POSITION OF THE PROBLEM 

2.1. Equations of  the problem 
For the sake of simplicity, we consider a pure liquid 

in its own vapor, both of the fluids are supposed to be 
Newtonian fluids. As usual when a liquid is in contact 
with its vapor, the interfacial tension will be neglected. 
The gravitation is not considered here and we suppose 
that at the initial time the drop is spherical, and that all 
the quantities:densities, velocities and temperatures 
have spherical symmetry, in such a way that the prob- 
lem remains spherical. 

The vapor is in the exterior of the sphere occupied 
by the liquid. In the following the subscript k means 
v for vapor and I for liquid : PR density, Vk(r, t) radial 
velocity, Hk(r, t) enthalpy, Pk(r, t) pressure, Tk(r, t) 
temperature, Cvk heat capacity, kk heat conductivity, 
/~k viscosity, R(t) radius of the drop, L latent heat, Tev 
evaporation temperature. The equations to be solved 
are the following (see Delhaye [9]) : 

Conservation of mass inside the fluids and at the 
interface 
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C, heat capacity 
H enthalpy 
L latent heat 
M Mach number 
~ square of radius 
P pressure 
R radius of the drop 
Re Reynolds number 
S Stefan number 
Tk temperature 
T,., evaporation temperature 
V radial velocity 
a thermal diffusivity 
k heat conductivity 
r local radius of sphere 
t time. 

NOMENCLATURE 

Greek symbols 
0 temperature 
~: ratio of thermal diffusivities 
/) density 
1~ viscosity 
c7 radius (Landau local radius) 
r time (Landau time). 

Subscripts 
I liquid 
v vapor 
k l o r v  
ev evaporation 
d initial 
0 reference. 

i~; + =(r-pkVk) = 0 (I) 
i ,2 (~r  

p , (V , - /h  = p , ( V , - R )  a t , - :  R(/). (2) 

where k denotes the time derivative of R. 
The balance of momentum inside the fluids and at 

the interface 

d Vk 8Pk 4 (8  ~- l"k 2 ? f'k 2 

'~ d, - ,> +.~'~\,>: + ;  # ,- 7 )~  ) 
(3) 

P , . -  P, = - p ,  ( I/\ - /~ )  V, +p,(  VI - / ? )  l"l 

V, 4 +?"~,~;. 7)-?"~c,. (4) 

The balance of energy inside the fluids and at the 
interface 

a rk  1 ? [ 77"~ 
pkC'k dt = kk ?r \ r :  r 2 <'~r) 

1 ? . 4 ( ~ J k _  Vk): 
-&;?- (,r~(r-V~)+ 5~'\,> r /  (5) 

• t:Ti k ( T ,  
k, ~ - ' ~ r  = R'( V' - t~)( H' - H ' )  

1 
+ R ( P , -  P,) + 5p,( V, - R)( V~ - V~) 

4 (,'? 1/, V,) at r = R(O. 

4 /[IV, l.j,) 
+5" ' (g-  w, 

At the interface we suppose that the temperature is 
continuous 

T~= T, = T,,, a t r =  R(t).  (7) 

We need the conditions at infinity and the initial 
condition 

P , ( ~ , t )  = P(  = cste / 

V,(cc, t) 0 

T, (oo, t) T, cste 

(8) 

R(0) = Rd 

. ,(r. 0) = vd(, ) ~ and 7~(,..o) = rd(,')~ 

l ' ,(r, 0) = V,a(r)~ T,(r, 0) = T~(r)J  

P,(r,O) = P,(r) J 

(9) 

We suppose that all the thermodynamical 
parameters, i.e. the evaporation temperature T~, the 
latent heat L, the heat conductivities and capacities 
C,k and kk, and the viscosities /~k are independent of 
pressure and temperature. The fact that the latent 
heat is considered as a constant is consistent with the 
assumption that the interface is infinitely thin. The 
liquids are generally weakly compressible, then we can 
consider that p~ is constant, therefore the conservation 
of mass ( I ) gives 

Vi = 0, (10) 

which simplifies relations (1) (6). The conservation 
of momentum (3) in the fluids now reads 8P,/&" = O. 
and therefore the pressure in the fluid is constant, i.e. 

P~ = cst(t). (11) 

(6) The vapor is considered as a perfect gas 
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P~ = RgpvlT~. (12) 

2.2. Reduction 
Let us nondimensionalize the simplified relations 

[taking relations (10), (11) into account]. Let Rd, the 
initial radius of the drop, be the length reference, 
T~v, the evaporation temperature, is the temperature 
reference, and if the pressure reference is PT,  we 
choose P0 as the reference density of the vapor given 
by the relation P~ = RgpoT~v. If we denote by 
ak = kdpkCvk the thermal diffusivities, we can associ- 
ate to aj the reference time to defined by to = R~/at, 
and the reference velocity V0 defined by V0 = Rd/to. 
With these definitions in mind, we can proceed to the 
following change of  variables : 

r R t p~ pj 
r - - - , - -  R ~  t --*--  p~--*--  p~- - , - -  

Rd gd to Po P0 

Vv P, 
V,-- '~o P v + p ~  ~ -  

T, -To ,  Tv-T~,  
T,--, T,--, 

T~(0) -- T~,. Ta~ (oo) --  Zev" 

The reader will have noticed that in spite of the 
change o f  variables, we have kept the same symbols  
for the quantities involved in the different equations 
which become : 

balance of mass 

c~p~ 1 0 2 
~-~ + ~r r ( r  p~V~) =O forr > R(t) (13) 

V, (R , t )=(1- -~ ) l~ ( t )  f o r r=R( t ) ;  (14) 

balance of momentum 

dVv 1 OP~ 

P" d-~ = 7M 2 Or 

1 4/'632 V~ 20Vv 2 \ 
+Ree3~-r  2 + r Or r 2 V~) f o r r>R( t )  (15) 

K(Pv - P,) -- ~-r(R, t) -- 1 P~ 

3 . 1 
x l ~ ( t ) ( - - ~ p , R e R + ~ )  for r = R ( t ) ;  (16) 

balance of energy 

c3T~ 1 {3 [ 2 dTl'l 
Orr~, r ~ - r )  for r < R(t) (17) 0t r 2 

dT~ 1 {3[ 2drv~ 7--1 1 c 3 2  
8p, dt - r  2 0r~ r ~-r ) - J £ i a P v  f i~r  (r V,) 

4T(7--1)  8 3  J - 1  t w  2/gV'\ar ~)"  + w - M  | ~ -  for r > R(t) (18) 

1 ( (p1~2~1~3  ~TI +F ~TV - ~ t ~ + G  1-- 
oT Tc-r = \ p ~ / / 

+-~ L ~ r r -  1-- 1~ for r=R( t ) .  (19) 

At the interface the temperature continuity reads 

T~ = T,, = O. (20) 

The state equation for the vapor becomes 

Pv --- pv[Tv(J-- 1) + 1]. (21) 

The following dimensionless numbers appear : 

the Mach number  

V0 Cvp 
M - ~ T ~ v ,  w h e r e T =  Cv,~ 

the Reynolds number  
Po V0 Rd Re = - -  

Ftv 

the reduced density : 

Pt 

Po 

al the ratio of the thermal diffusivities e = - -  
av 

Cvl (Tev  - -  TI  d ) 
the Stefan number  S 

L 

Some other numbers appear defined by 

kv T~-- Tev 7(7-11)) FptEM 2 
F = E { p ,  with~o T~,,-TI d G - 2 ( j _  

G T d 3 Re 
H-=plR~ J = ~  K - 4 T M 2 "  

The numbers e and Re can be related using the 
Prandtl  number  Pr by e = PrRe/7. 

The initial conditions now become 

f 
R(0) = 1 

Vv(r, O) = V~(r) 
Pv(r, O) = Pv(r) (22) 

Tt (r, 0) = T~ (r) 

Tv(r,O) = Tav(r) 

the boundary  conditions are 

/ e v ( ~ ,  t) = 1 

I/,(oo, t) o. 

T , ( ~ ,  t) 1 

Let us evaluate the different values of these non-  
dimensional numbers. We consider a drop of water 
with Rd = 1 mm, T~ = 300°C, T~(0) = 60°C, P~ = 1 
atm. The physical tables give: kt = 0.68 W m ~ K -~, 
kv = 0.044 W m -~ K -~, p) = 1000 kg m -3, p~ = 0.37 
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k g m  ~ , l h = 5 " 1 0  4 k g m  is  ~ , / x , = 2 - 1 0  ~kgin  1 
s i, C,.I = 4180 J kg i K I, C,, = 2000 J kg J K i 

L = 2250 J kg ' K ~. With these values the different 
numbers are: M = 3 . 5 x 1 0  7 l l p ~ = 3 . 7 x 1 0  a 
R e = 3 . 0 2 x l O  ~, ¢ : = 2 . 7 x 1 0  3 S = 7 x l 0  ~, 
7 =  1.29, P r =  I . I ,F=O.32 ,  J =  1.54, K =  l a x  10 >. 
H ~- G = 9.96x 10 )a. 

The parameters of the first line are small. They 
are placed in equations (15), (16) and (18), in such 
positions that boundary layers can appear. This fact, 
which we will illustrate later, must be considered in 
any numerical study of this system of equations. To 
handle the analytical solution, we will proceed to 
asymptotic expansions. But as there are several small 
parameters the expansions will be done in the order 
of  increasing magnitude of  the parameters. The first 
expansion will be made with respect to the Mach 
number. 

3. ASYMPTOTIC ANALYSIS 

As we indicated before, we are going to expand the 
solution with respect to different parameters. However 
the domains of  the partial differential equations, 
defined by the radius R(t) depend also on the 
parameters, because R(I) is one of  the unknowns of  
the problem. Therefore, we must carry out Landau 
transformation, which makes the domain a fixed one. 
That is, we consider the change of  variables defined 
by 

; i r = I {23) 
F - -+  F 

G ~  

R(t) 

In these new variables, the drop is parainetrized by 
a~  [0, 1[. We set 0(a, r) = T(aR(t),  t), the temperature 
in the different domains, and we keep the same sym- 
bols for the velocity and density. Now equations (13) 
(21 ) become : 

(1) Mechanical equations 
outside the drop, i.e. tbr c~ ~> 1 

?p, ) ~r ?,r (.)~ + ~ cs 3 ~r(c,2,o, l', ) = 0 (24) 

~(p,V,) /~ ,~(p,,V,) l ( i  ? , , )  

c,~ R"  0~-- + ~ .? ,~.('~';" )': ) 

1 d:P, 1 4 (~:  I/', 
+ - - / 4  . . . .  7 M e R  ~r R e 3 R 2 t ? c r  ~ 

2~V ,  2 \ +~ ,G-,-~ v,)=0 

P, =p,[o,(J-1)+,}  

&(oc, ~) : 1 / 

V,.(oo, r) of" 

{25} 

(26) 

(27) 

at the surface of  the drop, i.e. for a = 1 

l/,(1, r) = ( 1 -  ~ ) R ( t )  (28a) 

{'  v K ( P , -  P,) = c~7-a (1, ¢7) 

(2) Thermal equations 
inside the drop, i.e. for cr ~< 1 

{iz - R a ?~ - R2a 2 (~ rT-  ~/{2aj, (29) 

outside the drop, i.e. for a >~ 1 

(,> v, :o,) 
~;" , ,G  - ~ o- ,,7 + k -  ,~. ) 

c ( ,  <>'x 
= =:.: 

7 - l r P ,  l ? 
) - I  R o-?G (~l~') 

7(] '--1) g J - - I  ~ 4 /dV ,  Va,,)2 + R,M 3 ~ .  (30) 

0,(~/~, t) = 1, (31) 

at the surface of  the drop, i.e. for o- = 1 

8')) 80, I . ( f p i ' 2 \ R i ~  
< + g i ,  a = - ~ R R + G t  ( I l l  \PV  J 

P, L ~a 

0~ = 0, = 0, (33) 

initial conditions 

R ( 0 )  = 1 

l q ( a , 0 )  = v,~(a) 

p,(a, 0) = P,(o-) 

0~(~,0) = Op(a) 

0,(~, 0) = 0~(~). (34) 

3. t. Mach number expansion 
For the sake of  completeness, we will begin with an 

expansion in Mach number. It is well known that in 
a reactive weakly compressible medium, the per- 
turbation is singular at the initial time, see Dwyer [10] 
for example. We obtain a similar resul t - - for  the outer 
expansion (long time expansion) the dynamic process 
(balance of  momentum) is completely driven by the 
thermal field. We will not calculate the inner expan- 
sion (short time expansion) and match it to the outer 
expansion, because the value of  the Mach number is 
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not of the same magnitude as the values of the other 
parameters and where the asymptotic limit is reached 
in a very short time on the one hand, and on the other 
hand there is no evidence in the experimental literature 
of such an effect, see Montlu~on [4]. We calculate the 
first order only and set 

V~(a, "~, M) = V° (0., "O + O( M) 

P.(0-, ~, M) = P° v (0-, T) + P~ (0", "0M 2 + O(M 2) 

0v(O,~,m) = 0°(0-,0 +o(m)  

P~(0-,r,M) = P°(0- ,O+PZ(a , z )m2  + o ( m 2  ) 

O~(0-,~,m) = 0°(o,O+O(M) 

pv(0-, ~, M) = pO(0-, ~) + O(M) 

R(~, M) = R°(T)+O(M). 

If we introduce these expressions into relations 
(24)-(27), and collect the first-order terms, we obtain 
the following mechanical equations 

,~pO 1~ ° ap ° 1 1 0 2 o o 
& R ° a ~ -  ~ R ° ~ ~ ( a  p~ v ) = 0. (35) 

The balance of momentum reduces to 

63po 
0,  

80- 

therefore the pressure depends only on ~ and is uni- 
form inside the vapor 

po = pO(~) (36) 

po(v) 
pO _ (37) 

O°(J - 1) + 1 

V0(l,~)=(l_ p, ~RO po(T))  . (38) 

The boundary  conditions read 

P° (°e ,z )  = 10} 
V°( °v, 0 " (39) 

So the pressure is uniform in the vapor at first order 
in M. If the initial pressure is not  uniform, a transient 
regime must take place at the initial time with the 
propagation of pressure waves. For  the sake of sim- 
plicity and for the reasons invoked before we will not 
study this transient phase and we will suppose an 
initial uniform pressure. Therefore, because of the 
boundary condition, the reduced pressure is equal to 
one. And the pressure inside the drop is obtained from 
the jump condit ion (28b) and (36) 

po (0-, ~) = 1. 

Taking equation (36) into account in the jump con- 
dition (28b) we obtain at second order in M 

[~ V ° 
P ~ ( l , 0 - P ~ ( 1 , r )  = L ~ 

- ( I - ~ p l R e R ° t ~ ° ) (  l -  po(~)] p' "]}~°l J3ReRO" 4~7 (40) 

The thermal relations give : 
inside the drop, i.e. 0. < 1 

~Z RO 0 630. - -  R 02 0 .2 0-2 , (41) 

outside the drop, i.e. a > 1 

l ao o ROaOO-i 1 1 a 
- 0 .  Ro  630- J " - -  - - - -  - Ro2  ,,2 63,, 

vo s0,,, 
0-2 ( O O ( j _ l l + l ) _ e R ~  ° 63-~- 

7 - 1  o 1 1 1 8(0.2 
- e ~ - ~ - ~ ( 0 v ( J - 1 ) +  )R-°~-80- V°), (42) 

at the interface, i,e. 0- = 1 

0°(1, r) = 0°(1, ~) = 0 (43) 

80 o FO0°= 1 o "o 
- -  -s R R .  (44) 630- + 630- 

The boundary  condition is 

0°(oo,~) = 1 ( 45 )  

and the initial conditions remain the same. 
At this order, the viscosity plays no role in the 

dissipation; there is also a simple relation between 
velocity V ° and thermal field 0v °. Let us eliminate pO 
between relation (35) and relation (37), which yields 

0 ° ( J - - l ) + l  1 ~0- 
R o 0-2 (0-2 V o) 

/ -~R0+V 0 630 0 a0°~ =(J-l)[ 
This relation can be combined with relation (42) to 

obtain 

O J - 1  e [ v//0.2630~\ 
U~ (~0.2v°1- R~U~\  ~b~-~/ 

This last relation can be integrated easily, and if we 
take into account the jump condit ion (38) we obtain 

= J - 1 ( 6 3 0  ° l [c~O ° ~ZT_l (~_ep,)))"  v° Ro~,\630- - ~ g ( 1 , ~ )  -~R°~° 

(46) 

As a result of the velocity boundary  condit ion (39), 
the temperature must satisfy the relation l i m . ~  630°/ 
~0- = 0, which we then have to verify once the thermal 
field is known. The relation (46) is not  usually sat- 
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isfied by the initial conditions, which reinforces 
the fact that it will appear as a boundary layer at 
the initial time. The perturbation is singular, and 
therefore we ignore it for the sake of  simplicity. 
Usually the mechanical problem is not considered, 
and the pressure is set to a constant in the vapor. At 
this stage, it remains to solve a thermal problem of 
which we recall the system of equations : 

inside the drop, cr < 1, 

i?O{' /~(' 301 ) 1 I ? ( ?01' / 
?z -- R ('a 7 = ; ~ a: (47) 

so  R (,: a- ('a &r / 

outside the drop, o- > I 

1 ? , O',!(J-~J ) +  J . :  ~ a ( . _  CO{') 
-;,R"" ~c~ /" (48) 

at the interlace, cr = 1 

01' ( 1, r) = 0', j ( 1, r) = 0 

Ct, I R,,l~O" 
,~cr + F & r  S 

boundary conditions 

, ~,3c, r) I. 

Relation (48) has been deduced eliminating V'). 
using equation (46), in the last term of equation (42). 
The influence of  the mechanical problem appears only 
in the term containing the velocity V ° in the left hand 
side of  equation (48), and in appropriate initial con- 
ditions coming from the matching of  an outer expan- 
sion [solution of  the system (35) (45)], and an inner 
expansion which still remains to be computed. 

3.2. Expansion in c 
In fact the problem involves the small parameters c 

and l/p~. ~: is small because the value of the liquid 
density is much greater than the one of  the vapor. 
Therefore, these two parameters are related and we 
set ~ = fl(1/p3, where fl = k~C,,./k,C,j. We set also 
17 = ~:V°/R °, and .~ = R ̀ )~. As there is no ambiguity 
we discard the index 0 in the previous system of equa- 
tions, which can be written : 

inside the drop, i.e. a < 1 

co, co, l l 
& ~ c r & r - ~ o : ? a  a - ? a ~  

outside the drop, a > 1 

0 v ( J - l ) + l  1 ~ ( , g 0 , )  _~30, 
- ;,:~ ~ ~-~  - v a ~ ,  

where 

= J -  1 /co ,  

(53) 

" 'P i ) ( r -  ~;p,))); 2 ( J -  

(54) 

at the interface, cr 1 

0 , ( l , r )  = 0,(1,r)  = 0 (55) 

?01 ?0 I . 
- -  + F ~  ~ - / t ' ;  (56) 
(o  ~;o 2S 

boundary conditions 

Or(at,z)  = 1. (57) 

It is now evident from equation (53) (the ~: being a 
factor of  the time derivative) that the t; expansion is 
singular and there is a boundary layer for t = 0, thus 
we will proceed to the outer and inner expansion (the (49) 
terms inner and outer do not mean inside and outside 
the drop, but mean short time and long time behav- 

(50) iour). 
3.2.1. Outer expansion in ~:. In order to carry' out 

the expansion we set 

(51) O,.(a, -r, O = 0',!(a, r) + O(r,) 

0, (a, r, ~:) = 01' (o, r) + O0:) 

:¢(r, ~:) = :~°(r) + O0:). 

We could insert these expressions into the system 
(52) -(57). but we would obtain an equation for the 
vapor temperature for which the integration is diffi- 
cult. It is preferable to obtain a relation between vel- 
ocity and temperature at order 1, from which we will 
derive an explicit expression for the vapor temperature 
field. Directly from relations (35) and (37) we have 

=~(O, . ( j_l l+l) ,_\&-~) .  (58) 

Let us note that relation (54) shows that 17(p, r, ~:) 
= 170(p, r) + O0"), then we obtain 

~ (  cr2 17(,) = 0. 
(52) ~ O , . ( J ~ l ) +  1 

This relations implies i7o =f l t ) /o2(O~)( j_  1)+ 1), 
where fit) can be determined with the jump condition 
at first order in Mach number:  17(1,r) = ( e - f i )  
()?/2~),  which can be written at order one in ~:: 
170( 1, r) = - fl(Ca°/2,Ca°) ; and finally we obtain 
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~o 0vO(j_ 1)+ 1 
170 (59) 

= _ fl 2~,0 a~ 
a0,o ~o ao~ 1 I e ( a 0 1 ' )  

- -  0 -2 (64) 0 
~z 2~ ° a0- ~o o.2 ~o ~ J '  

We are now able to obtain the temperature field. 
(1) Outside the drop, or in the vapor, i.e. for a > 1 
Taking into account the previous relation (59) for 

the velocity, relation (53) gives at first order 

l a / ,  ao°'~ 

which can be integrated in 

7/~o 1 aO ° 
2 0 -2 ~0-  ' 

0-~ a0? y ~ ° 0 ~  ~ G j + - -  =h(~). 

Let us show that h(O is defined by 

a0? h(~) = ~ j ( l ,  r). 

At the interface, i.e. for 0- = l 
Taking equation (63) into account, equation (56) 

gives the boundary  condit ion 

ao~ - ~,~° /2 )s  ~30- - F ~o (65) 
exp [ - 7 f l ~ ° / 2 ] -  1 

0~(1,~) = 0 .  (66) 

l fwe want to sum up the situation, we have a first- 
order outer expansion (0 °(a,z,  S) ,0 °(0-,z, S), ~0 

(60) (r ; S)), i.e. defined for long time, as a solution of the 
free boundary problem (64)-(66) for 0 °, and by equa- 
tion (63) for 0 °, but with no appropriate initial con- 
ditions either in the liquid or in the vapor. 

3.2.2, Inner  expans ion  in e. We are now in a position 
(61) to obtain an inner expansion, for that purpose let us 

set 

To integrate equation (60) let us set 0 " =  0 ° 
- [2h(T)/Tfl~°]. We see that 0v*(l, r) = - [2h(r)/yfl~ °] 
and with this notat ion in mind, we notice that 
equation (60) can be written 0-2(00*/00-) + (7fl~°/2)0 * 
= 0, which can be integrated in 

e x . [ - V ( ' - a ) l  ' 
0, ° = h(r) (62) 

2 

Using relation (57) we can deduce the unknown 
function h(r), thus 

- 7 f l ~ °  / 2  
h ( r )  = 

exp [ -~ /3~° /21 -  1 

The temperature field in the vapor is given by 

0,0 = (63) 
exp [ -  7fl~° " 

If we inject into relation (54) the value of 0 ° given by 
equation (61), we will recover equation (63). The 
problem in the vapor is fully solved once the evolution 
of ~o, the radius square, is known. But once again 
relation (63) written at initial time gives an a priori  
form of the initial field of temperature. This field, 
given by equation (63), has no reason to be the real 
initial field. Therefore a boundary  layer can occur, 
and the perturbation is singular. 

(2) Inside the drop or in the liquid, i.e. for 0- < 1 
We have to compute the thermal field of the vapor, 

for a long time. We must expand relations (52) and 
(57) in power of 8, which gives 

~ ( ~ ) -  1 
Zo = - ,  ~(z0) - and ff(0-,%) = 0(a,r) .  

g 8 

(67) 

With these new variables the system (52)-(57) can 
be written : 

inside the drop or in the liquid, i.e. for 0- < 1 

= e (1 + ~ )  o: & \ a0-) (68) 

outside the drop, or in the vapor, i.e. for 0- > 1 

a0; a¢ 
8~o a ~ 0 -  0a 

O , ( J - l ) + l  1 O ( 0 - , 0 ~  17a0~~ 
- ~ ( l+~)  0-~a~ k ~ g j -  

(69) 

with 

_J-1 (e0t 1/00-v 
17 - 7(1 + ~ ) \ & r  -- aSt-ffa~ (1' %) 

/ .  

at  th e  in t er face ,  i .e .  for  a = 1 

~ ( 1 , % )  = O~( l ,To)  = 0 

~-a 00- = - ~" 

(71) 

(72) 

The boundary  condition is 
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ff,(,~_,r,,) = 1. (73) 

We must add the initial conditions 

ff,.(a,O) = 0,(a, 0) and (~(a,O) = O~(a,()). 

(74) 

Now we look for an expansion of the following 
form : 

ff,(n, r,,.~:) = ff~,!(n, r(,)+ O0:) 

~(~. r,,, c) = (~>(~, r,)) + O0:) 

~(r(,. ~:) = ?)(~,)) + O(c). 

At first-order we obtain : 
inside the drop or in the liquid, i.e. lk~r a < 1 

-- = 0: 

outside the drop, or in the vapor, i.e, for n > 1 

¢ , ) -  - N J -  Cos 

with 

= - -  \ C a  ,~\Tg(l'r")+JLi/* 2 ) ) :  

at the interlace, i.e. lbr a - I 

O,('(I. r(,) = 0",!(I. r,,) = o 

+ F a  > 
~'a ca 2S 

The boundary condition is 

g(!(<-, r,,) = 1, 

and the initial conditions are 

d{!(a. 0) = 0, (or. 0) = 0',.(a) 

and t'71~(o,0) = 0,(or, 0) = 01(a). 

(78) 

(79a) 

Relation (75) implies that the temperature in the 
drop is constant, that is (~()(~.r,))= (t{(rz) with the 
notation of  the initial temperature fields given in equa- 
tion (81). The Van Dyke [8] matching condition reads 

lim (01') = lim (~()) in the fluid (82a) 
r ~ 0  r • g 

!im (0{!) = Ji m (()",') in the vapor (82b) 

!ira (;~") = fire (,~") = I 

for the square of  the radius. (82c) 

At this order, the temperature in the fluid is steady 
and equal to the initial temperature. Therefore the 
temperature in the vapor and the radius are the only 
unknown quantities, indeed the temperature of  the 
liquid can be substituted in equation (79a) to obtain 
a system of  equations for the vapor depending only 
upon the unknowns, and we obtain 

),, ,sFd01( c~?,? = - ~  Ld ~ l)+,~ i~g(l,r,,)]. (79) 

l 'he system of equations for the inner problem is 
no,a. complete. 

3.3. Derivation o /  the as),mptotie expression O/ the 
radiH5 

Let us recall, at this stage the statement of  the 
(75) asymptotic problem we obtained : 

(1) For a short time period the inner expansion is 
valid. The temperature inside the liquid is constant 
and equal to the initial temperature. The temperature 
in the vapor as well as the radius are solutions of  the 
system of equations (76) (81). 

(2) For a long time period the outer expansion is 
(76j valid. The temperature in the vapor is explicit as a 

function of  the radius in relation (63). The tem- 
perature in the liquid and the radius are solutions of  
the system (64)-(66), with no initial conditions. 

(3) The initial conditions for the outer expansion 
are obtained by the matching conditions (80). 

At this order, the inner solution for the liquid is 
(77) known, and the outer solution does not depend on the 

vapor temperature field, so the problem inside the 
liquid can theoretically be completely determined as 
well as the radius. 

3.3. I. Short time expansion. The Stefan number S 
is small in order to obtain an analytical solution of  the 
problem. It is tempting to proceed to an asymptotic 
expansion with respect to S, in the system (64) (66). 
Let us set 

(80) 01)(o, r, S) = ~ 01'~(o, r )S  ~ 
i (I 

(81) :~')(r, S) = ~ ~° ' ( r )S ' .  (83) 
i :  o 

(i) At first order, equations (64) (66) reduce to 

~01 )`) .~) .... (~0 °° l I f ~ ( ( ~ 0 1 ) ( ~ _ ) )  

(84) 

Ol)" (1, r) = 0 (85) 

.~lm(v) = 0. (86) 

The initial conditions are the matching conditions 
(82a) and (82b). The solution of  this system is 

;¢00(~) = 1 (87) 
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with 

• sin(rata) 
0 ° ° ( a , r ) =  ~ A, rr exp(--(nn)2z) (88) s(aO ? ~o OO'PI~ 1 1 0 (a2~O?~ 

f I A, = - 2 O{(u) sin(mtu)u du. (89) 
o 

(ii) At second order, we can deduce the evolution 
of the radius by 

(30°°(1,'c) = - F -  1 "ol 
3-7 ~ #  (0. 

Therefore, taking relation (88) and the matching 
initial condition (82c) into account, we obtain 

-a2°~ (0 = 

[ Fr  + ' ~  A" ( -  1)'+' 1 - 2  (exp(-- (nn)2~) - 1) (90) I nT~ 

which gives for the square of the radius 

[2  .@°(z.S) = 1 - 2 S  FT+ A, ( - 1 ) " + '  
= )  t/7~ 

x ( e x p ( - ( n ~ ) 2 ~ ) - l ) ] + O ( S  2) (91) 

the initial velocity of the interface is given by 

~°(0) = - 2  F -  n~(--1)"+'A,, 
1 

= - 2 I F +  d0(( l ) l  ~ - j .  (92) 

The sign of this derivative indicates if a con- 
densation or an evaporation occurs initially. In the 
case of an initial constant temperature inside the drop 
there is always a condensation at the beginning. These 
expansions are valid as long as the radius of the drop 
is different from zero and as long as the series defined 
in equation (83) converge. We can estimate from 
equation (91) a time of evaporation r o  it is a solution 
of the equation ~°(re°v(S)) = 0 given by 

1 1 1 & ( - 1 )  "+1 
r°v(s) = ~ +  ~,2., ~ A,+O(S). (93) 

The dominant term is O(1/S), thus we need a solu- 
tion valid for a long time period, the solution (91) 
being valid only for a short time period, as we will 
justify later. Let us remark that for all integer m 

O°°(a, T°~(S)) = o(Sm). (94) 

3.3.2. Long time expansion. In order to have a solu- 
tion for a long time period we can dilate the time scale 
setting rj = Sz ; with z~ = O(1), thus z = O(I/S). Let 
us consider O~(tr, z l ) =  O°(a,O and ~ ° ( r l ) =  ~°(z). 
With this change of variables the equations (64)-(66) 
become 

d~(1,~,) = o  

f o r a <  1 

(95) 

(96) 

~ o  , , _ 7Sfla~o /2 _ 1_2~o. 
~a tJ,r~) = - -F  : 2 

exp [ -  "/SflP° /2] - 1 

(97) 

The dot means the derivation with respect to r). As 
usual we can look for a solution of the following form : 

i = 0  

.4o(¢,,S) = ~ ~o,e,)s, 
i=O 

After some algebra one can show that at all order 
m 

~°m(a,v~) = 0 (98) 

which is compatible with equation (94). Then equa- 
tion (97) gives 

- 1 ~  ° - F ,  - 7 f l ~ ° / 2  = o(S"). 

2S exp [ -yS f l~° /2]  - 1 

(99) 

Relation (99) is an equation in ~5 a° that we can solve 

g0  = _ 2 F i n (  1 +;,flFS) +o(Sm) . (100) 
7flFS 

At this scale of time the slope of the curve giving 
the radius square with respect to the time is constant 
and can be expressed in dimensionalized variables by 

~o Cvlkv [ Cp , (T~-  Tev)) 
= - 2 ~ l n [ 1  + L " 

This relation has been derived by Williams [6] with 
the assumption of a quasi-stationary solution. Let us 
note that relation (100) provided a Nusselt number at 
the interface given by I In(I+TflFS)/S) ' f lFS, which 
can be applied only for long time period. This relation 
has been given previously by Montlu~on [4], also 
within the assumption of a quasi-stationary solution. 
Once integrated, equation (100) gives 

~ ° ( z , ,  S) = - 2 F  ln(1 +7flFS) 
7flFS 

~, +f(S), (lOl) 

where f(S) is a function which remains to be deter- 
mined. If we look for an expansion off(S) in the form 
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.2,' 
l (s) = ~. / "S ' .  (102) 

The determination of this/ 'unction can be realized 
using the matching rule of Van Dyke. To obtain the 
third order in equation (102), we match the 
expressions (101) and (90). At this order we have 

. / =  1 + 2 S  ~ ( -~1 ) "2 '  A,, 

flF(,,~l ( - -# '  ]'(')H'I ', , --A,,)6- + O ( S ' ) .  (i031 +7 
% 

The evaporation time -~,., = St,., is modified, it is a 
solution of P°('?<.,(S), S) = 0 and is given by 

[JFS 
f~,(S) - 2F ln ( l  +TflFS) j iS )"  (1041 

the relative variation of the evaporation time cal- 
culated and matched at order two, i.e..f is given by 
equation (1031 at order two, or without being 
matched, i . e . f i s  equal to one is 

- - =  ~ ( -  1)"+ J 
Ar~, 2S ~ A,,. ( 1051 

Tc~ . = I #1I~ 

In the case of a constant initial temperature 
A,  = 2 ( -  11"+ ','mz, therefore Ar~,,,r~, = (2.,"3)S. It is 
possible to obtain an expansion of.flS) at tiny order, 
but we will see in the next section that the second and 
third order give good approximations. 

4. NUMERICAL COMPUTATION AND 
DISCUSSION 

In order to know the precision of the asymptotic 
matching for the radius, we numerically solve the sys- 
tem of equations (64)-(66), but write in the moving 
domain, that is after performing the transformation 
inverse to the Landau transformation (23) 

/ = T  

r =  cTR()(t) 

T~)(r, t) = Ol)(a, r) 

Let us quickly describe the numerical algorithm. 
The weak formulation can be written 

OR"<') ,,T() i i3T ° r21~"* ' d r + , %  R"~lr 2 d1' ' I 
j,) ~,r , dr a ~  d" 

R O ( t ) v ( R O ( t ) ) [ _ F  -713~#('(t) 1 .,) q 
exp [-, , , /~.~°(t)]- 1 - s P  ( t )J  

for all functions/,(r). (106) 

We choose a regular discretization of the interval 
[0, R(0)], one-dimensional PI elements. We note v~(r), 
the functions associated with this discretization. The 
temperature is discretized in 

T I ' =  ~" T ' ( I ) t ' (  
/ =1  

The numerical system to be solved is 

I dil" M,/(R o) + T'R,,(R °) = N ( ~ ° ) v ' ( R ' ( t ) ) R ° ( I )  
(.1I 

I T' = 0  f o r r =  R')(t) 

+ initial conditions 

with 

.'~('(t) = (R°(t)) -' 

and 

(1071 

~ R ° ( t )  

M,~(R I') = J, r2i"r 'dr  

f 
t~"lr~ , dl:' d/: / 
> . . . . .  dr_dr  Ri~(R I') = t dr 

exp [ -  7ft.# °/2] - 1 2S 

If A/ is  the step time, we note T'(I<AI) = T'k, and the 
linear system to solve, with an implicit scheme, can be 
written 

"v J 
Ik ~ &t' - Tk M,i(Rk )11+ TIk~ i R i i (Rk  . I )  

/ ,~ # \ 
= R k ~ i v ' ( R k ~ t J N  . - 'k~l-- '  k (1081 

The value Rk+~ is determined in order to obtain 
Tk i ,  = 0 fo r r  = Rk~l. 

Let us compare the results, the fluid and the vapor 
are initially at constant temperature, the evolution of 
the temperatures fields are given in Figs. 1 and 2. 

In order to verify the asymptotic expansion in Mach 
number let us plot the velocity in the vapor (Fig. 3). 
We notice that the assumption used for the Mach 
number development is fulfilled. 

Let us plot, on Fig. 4, the square of the radius 
computed numerically vs time, and the square of the 

1 
0.01 

0.8- 

I 0.6 

0.4 • 0.15 

.2 
02 

0A 

0 0,2 0.4 0,6 0.8 
a 

Fig. 1. Temperature in the drop, at different times r. 
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}~ beta-7.3 | 

Fig. 2. Temperature in the vapor at different times r. 

0.5, 3 . . . . .  

- o  ~ ~ ; ; io t z  

O" 

Fig. 3. Velocity in the vapor for different time z. 
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Fig. 4. Square of the radius of the drop vs time [plain line is 
the numerical computation . . . .  is the inner expansion (98), 

is the outer expansion order one ..... is the outer expansion 
order two (101) (103) and --  is the outer expansion order 

three]. 

1' I . . . . . .  1°8 . 
R 20'6 \ ~  ~ , . ~  

0.4 \ ~ , .  

F =0.3Z " ~ ,  
0 2 S = 13.o7 \ ~  \-'%.. 
0 . . . .  \% ,  

0 5 10 1 5  20 25 30 

Fig. 5. Square of the radius vs time (plain line is the numerical 
computation and outer expansion at order two and the 

dashed line is the outer expansion at order one). 

long time period. In Fig. 5 we have plotted the evol- 
ution of the square of the radius computed numeri- 
cally and analytically. We used outer expansion at 
order two only, i.e. withf(S)  = 1 + f i  (S), at this scale 
of time the curve obtained by numerical computat ion 
and the one obtained analytically are superposed. 

The difference in the intersection of the two curves 
with the time axis provides the error in the evaporation 
time given in equation (105). 

We have, for the Mach number  expansion, neg- 
lected the terms containing G and H as factors, 
because both of these numbers are proportional to 
M 2. However in equation (32), the concerned terms 
are proportional to the velocity of the interface which 
tends to infinity. We must check that all the terms 
remain finite. The first condit ion is 

G ( 1 - p ~ ) ~ ) ~  ~< 
1 
~IRRI, 

that is x/SG(1 - p ~ ) ( ~ / 2 )  ~< R, which gives numeri- 
cally (2.257/2)~ ~< R. If we choose for ~ the value 
obtained in equation (100), that is ~ = 4.06 x 10-:,  
we obtain the R >/4.5 x l0 2. The droplet is almost 
completely evaporated, and the radius is too small to 
apply the hypothesis of a cont inuum medium. The 
second term must be evaluated, and the condit ion can 
be written as 

p ,H  OVv 1--p~ ~ ]/~[R 

radius computed analytically; we used the inner 
expansion (91), and outer expansion (101). The 
matching has been done at order one, that isf(S) = 1, 
at order two, f(S) = 1 +fiS, and three 
J( S) -- 1 + f , S + f 2S 2. We notice that the outer expan- 
sion is a very good approximation from the reduced 
time at 0.5, the inner approximation describes cor- 
rectly the variation from initial time up to the reduced 
time 1. 

Let us now see the quality of the expansions for a 

Using relation (59) we can evaluate the derivative of 
the velocity at the interface, it is (('~Vv°/&r)l~=l 

5400(~°/R). This relation with the previous 
inequality gives the condit ion R >/2.4 × 10 L Once 
again the term considered can be neglected for the 
same reasons. 

5. C O N C L U S I O N  

The problem of the evaporation of a droplet in its 
vapor had been previously considered on the basis 
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gama= 1.29 

0 O.Z 0.4 0.6 0,8 
Fig. 6. Evaporation re, time vs S (104) [plain line is the 
numerical computation, is the expansion order one for 
/ i S )  . . . .  is the expansion order two for/IS) and • . is the 

outer expansion order three for/{S)]. 

of  the quas i -permanent  hypothesis  which consists of 
assuming that  the tempera ture  of the drop depends 
on time only by the var ia t ion of  the radius. With this 
hypothesis  it is possible to derive that  the square of  
the radius is a linear function of  t ime ; this law known 
as the R 2 law is well shown by experimental  results. 
We have reconsidered this old problem in the light 
of  asymptot ic  expansion to determine the range of  
validity of the quas i -permanent  hypothesis,  and  to 
improve,  if possible, the R-' law. We have seen that  the 
quasi pe rmanen t  hypothesis  lies on the existence of 
three small parameters  : the Mach  umber,  the rat io of  
the thermal  diffusivities, and  the Stefan number .  All 
the expansions associated with these numbers  are 
singular,  but  it is possible to obta in  an expression 
which contains  the previous one and  correct the 
known law. The compar ison with numerical  com- 
puta t ions  shows that  a matched expansion at second 
order, i.e. l inear in the Stefan number ,  gives a quite 
good approx imat ion  for the evolution law of  the drop 
radius. To appreciate the expansions dependence on 
S, we have plotted,  on Fig. 6, the evaporat ion time r,., 
vs S, for the computed  solution and the solutions 
obtained by expansion at different orders. 

] 'he  expansion at order  3 is valid for S < 0.4 • this 
interval gives the validity domain  of  the quasi-per- 
manent  hypothesis.  

Let us note tha t  the method applied here could be 
used for the combust ion  theory of  droplets.  The 
results would be similar for the drop  radius, but  not  
for the radius of  the flame, the hypothesis  of  the analy- 
sis given here is not  satisfied, the evolut ion of  the flame 
radius never reaching a quas i -permanent  regime, see 
Law [11]. 

Let us add, tha t  none of  the expansion in ~: and  S is 
uniform with respect to the other,  consequent ly the 
order of  expansion (firstly in ~: secondly in S) is essen- 
tial. 
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